BINGHAMTON UNIVERSITY

State University of New York

Delineating Rooftops and Mapping Solar Radiation Potential: A Case Study in the Midtown Manhattan of New York City

Conditional

processing

Figure 3. Roof plane fitting model

- resolution four-band digital imagery (Red, Green, Blue, Near Infrared) and existing building footprints.

Zhengjie Xie

Department of Geography, Binghamton University, Binghamton, NY, 13902

Figure 10. Rooftop footprint

Table									
Jan ×									
OBJECT	Shape *	Shape_Leng	Shape_Length	Shape_Area	BIN *	COUNT	AREA	SUM radiation/ KWh	^
978	Polygon	491.770538	460.268192	5473.084006	1017600	85	5440	283.816557	
1408	Polygon	184.742775	117.516916	662.770449	1019473	10	640	99.403987	
839	Polygon	268.685266	317.43547	5452.096018	1017017	83	5312	959.371468	
2012	Polygon	551.924744	373.878496	7972.913901	1087841	125	8000	2370.523977	
1003	Polygon	277.84312	255.447206	3964.391531	1018138	63	4032	993.867701	
1160	Polygon	142.97887	150.914459	1033.112389	1018343	17	1088	197.290795	
1064	Polygon	124.42514	134.240316	1034.602776	1018218	17	1088	252.591707	
1106	Polygon	173.925343	182.634174	2089.725095	1018272	33	2112	737.055232	
256	Polygon	640.7846	635.066866	19860.049978	1015211	310	19840	1578.834027	~
054	Delugen	220 000552	220.050612	1560 201062	1015200	25	1600	102 250701	*
I 4 22 ▶ II III III (0 out of 2039 Selected)									
lan									

Figure 12. Zonal statistics as a table

Figure 11. Rooftop solar radiation map

RESULTS

CONCLUSIONS

- potential available space resources.

REFERENCES

- INTEGRATION OF AERIAL IMAGES. ISPRS, Vol. XXXIV, Dresden.
- brad.adams@woolpert.com.
- Master thesis of University of Redlands.
- University of North Carolina at Chapel Hill.

• The total rooftop area in Midtown sample area is 12,203,065 ft² (1133.7 m²), which are high

• Conclude from 12 months solar potential maps and average solar energy trend chart that May, June, and July had much higher radiation energy in 2015. Because the New York city is located at northern hemisphere, in this three months the incident angle of solar rays is closest to 90 degrees. The weather condition is better have less diffuse radiation.

• Further, according to various requirements of customers, suitable rooftops could be extracted by using DSM (elevation) data combine with solar maps, aspect and slope maps.

• F. Rottensteiner and Ch. Briese, 2003. AUTOMATIC GENERATION OF BUILDING MODELS FROMLIDAR DATA AND THE

• Brad Adams, 2012. Mapping Solar Energy Potential Through LiDAR Feature Extraction. Retrieved from

• Taira Nakanishi, 2010. Identifying and Viewing Rooftop Solar Potential: A Case Study for the City of Redlands, California.

• Lyle Robert Leitelt, 2010. Developing a Solar Energy Potential Map for Chapel Hill, NC. A Master's Project of the